HOW BATTERY ENERGY STORAGE WORKS

At its core, a battery stores electrical energy in the form of chemical energy, which can be released on demand as electricity. The battery charging process involves converting electrical energy into chemical energy, and discharging reverses the process. Battery energy storage systems manage energy charging and discharging, often with intelligent and sophisticated control systems, to provide power when needed or most cost-effective. The components of a battery energy storage system generally include a battery system, power conversion system or inverter, battery management system, environmental controls, a controller and safety equipment such as fire suppression, sensors and alarms.

THE IMPORTANCE OF BATTERY ENERGY STORAGE

For several reasons, battery storage is vital in the energy mix. It supports integrating and expanding renewable energy sources, reducing reliance on fossil fuels. Storing excess energy produced during periods of high renewable generation (sunny or windy periods) helps mitigate the intermittency issue associated with renewable resources. It also provides grid stability and resilience, as it can respond quickly to grid demand and supply changes.

Here are some of the more prominent reasons that make battery energy storage critically important:

Enabling Renewable Energy

As mentioned, renewable energy sources such as wind and solar are intermittent, producing energy only when the wind blows, or the sun shines. The periods when these sources generate energy do not always align with when energy demand is highest. A battery energy storage system (BESS) allow storing energy when production is high, which can then be used later when demand is high. Integrating renewable energy with storage enables a more significant proportion of energy to come from renewable sources.

Grid Resiliency and Reliability

As we shift to a renewable energy future, our electrical grid must adapt to handle increased variability and decentralization. A BESS can help stabilize the grid by absorbing excess power during periods of high production and releasing it during periods of high demand. Utilizing a BESS in this way can help reduce blackouts and enable a more consistent grid power supply. This resilience is especially crucial during extreme weather events, which we see more of worldwide.

Reducing Emissions from Peaker Plants

Peaker plants operate only when there is a high demand for electricity, or “peak” demand. These plants usually run on fossil fuels and are less efficient than other power generation sources as they emit more greenhouse gases. A BESS can reduce reliance on these plants by storing energy during periods of low demand and supplying it during these peak demand periods.

Supporting Electrification

The electrification of many industries currently powered by fossil fuels is needed to achieve a zero-emissions future. These industries include transportation and heating, moving away from internal combustion engines and gas boilers to electric-powered equivalents, such as electric vehicles and heat pumps. The transition to electrification will increase electricity demand and put further strain on the grid. A BESS can help manage the increased demand and smooth out consumption, enabling the integration of these electric loads into the energy mix without significantly expanding power generation capacity.

Energy Independence

On a more localized level, a BESS allows homes and businesses with solar panels to store excess energy for use when the sun isn’t shining. Using a battery energy storage system in this way increases energy independence. It reduces reliance on the grid, reducing emissions associated with energy production and transmission.

Battery energy storage is essential to enabling renewable energy, enhancing grid reliability, reducing emissions, and supporting electrification to reach Net-Zero goals. As more industries transition to electrification and the need for electricity grows, the demand for battery energy storage will only increase.

Source: